What's so special about this pseudo-random number generator?
This carefully designed PRNG utilizes more than 1536 bits of internal “state” memory. The operating parameters of the generator's algorithm were carefully chosen (it uses a “safe prime” factor) to guarantee that every possible PRNG “state” is visited before the sequence begins to repeat. The result is that the “period” of this generator will be the “Germain prime” 1,768,863 x 21535 - 1, which is approximately 2.132 x 10468. This is such a large number that it might as well be infinite. This generator effectively never repeats.
This carefully designed PRNG utilizes more than 1536 bits of internal “state” memory. The operating parameters of the generator's algorithm were carefully chosen (it uses a “safe prime” factor) to guarantee that every possible PRNG “state” is visited before the sequence begins to repeat. The result is that the “period” of this generator will be the “Germain prime” 1,768,863 x 21535 - 1, which is approximately 2.132 x 10468. This is such a large number that it might as well be infinite. This generator effectively never repeats.